Climate variability slows evolutionary responses of Colias butterflies to recent climate change.
نویسندگان
چکیده
How does recent climate warming and climate variability alter fitness, phenotypic selection and evolution in natural populations? We combine biophysical, demographic and evolutionary models with recent climate data to address this question for the subalpine and alpine butterfly, Colias meadii, in the southern Rocky Mountains. We focus on predicting patterns of selection and evolution for a key thermoregulatory trait, melanin (solar absorptivity) on the posterior ventral hindwings, which affects patterns of body temperature, flight activity, adult and egg survival, and reproductive success in Colias. Both mean annual summer temperatures and thermal variability within summers have increased during the past 60 years at subalpine and alpine sites. At the subalpine site, predicted directional selection on wing absorptivity has shifted from generally positive (favouring increased wing melanin) to generally negative during the past 60 years, but there is substantial variation among years in the predicted magnitude and direction of selection and the optimal absorptivity. The predicted magnitude of directional selection at the alpine site declined during the past 60 years and varies substantially among years, but selection has generally been positive at this site. Predicted evolutionary responses to mean climate warming at the subalpine site since 1980 is small, because of the variability in selection and asymmetry of the fitness function. At both sites, the predicted effects of adaptive evolution on mean population fitness are much smaller than the fluctuations in mean fitness due to climate variability among years. Our analyses suggest that variation in climate within and among years may strongly limit evolutionary responses of ectotherms to mean climate warming in these habitats.
منابع مشابه
Morphological and physiological determinants of local adaptation to climate in Rocky Mountain butterflies
Flight is a central determinant of fitness in butterflies and other insects, but it is restricted to a limited range of body temperatures. To achieve these body temperatures, butterflies use a combination of morphological, behavioural and physiological mechanisms. Here, we used common garden (without direct solar radiation) and reciprocal transplant (full solar radiation) experiments in the fie...
متن کاملSYMPOSIUM Complex Life Cycles and the Responses of Insects to Climate Change
Synopsis Many organisms have complex life cycles with distinct life stages that experience different environmental conditions. How does the complexity of life cycles affect the ecological and evolutionary responses of organisms to climate change? We address this question by exploring several recent case studies and synthetic analyses of insects. First, different life stages may inhabit differen...
متن کاملComplex life cycles and the responses of insects to climate change.
Many organisms have complex life cycles with distinct life stages that experience different environmental conditions. How does the complexity of life cycles affect the ecological and evolutionary responses of organisms to climate change? We address this question by exploring several recent case studies and synthetic analyses of insects. First, different life stages may inhabit different microha...
متن کاملInheritance of White Wing Color, a Sex-Limited (Sex-Controlled) Variation in Yellow Pierid Butterflies.
PAGE INTRODUCTION ................................................................... 495 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 Acknowledgments .......................................................... 498 Previous investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
متن کاملPlastic and evolutionary responses to climate change in fish
The physical and ecological 'fingerprints' of anthropogenic climate change over the past century are now well documented in many environments and taxa. We reviewed the evidence for phenotypic responses to recent climate change in fish. Changes in the timing of migration and reproduction, age at maturity, age at juvenile migration, growth, survival and fecundity were associated primarily with ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 282 1802 شماره
صفحات -
تاریخ انتشار 2015